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EFFECT OF THERMOCAPILLARY FORCES

ON THE INITIAL SECTION OF A MELT FILM

UDC 532.522V. I. Yakovlev

The previous analysis of fields near the upper triple point of the floating-zone melting process
is supplemented by the analysis of thermocapillary forces on the melt surface. It is shown
that the effect of these forces is large in the general case, and a melt film with a macroscopic
radius of curvature may be formed only if the temperature gradient over the melt surface and
thermocapillary forces are small; in this case, the angular coordinates of the melt-film cross
section are also small.

The geometric characteristics of the initial section of a stationary melt film formed in the floating-zone
melting process were studied in [1]. Based on the analysis of local hydrodynamic and temperature fields near
the triple point, relations between the angular coordinates and curvature radii of cross-sectional boundaries
of the melt film and external heat fluxes are obtained. The hydrodynamic condition was the absence of shear
stresses on the free surface of the film. It was found that different geometric configurations of the initial film
section are possible under different thermal conditions.

Present paper is a continuation of [1] and contains results of studying the effect of thermocapillary
forces. The same notation is used here, and the formulas borrowed from [1] are marked by an asterisk.

Thermal convection and thermocapillary forces taken into account, the global problem, generally speak-
ing, is not divided into the hydrodynamic and thermal subproblems, as in [1], since the equation of motion has
a term that describes buoyancy forces related to the temperature gradient. However, as noted in [1], hydro-
dynamic equations exert no effect on the local parameters of the melt film; thus, the latter are not affected by
thermal convection. Thermocapillary forces affect one of the hydrodynamic boundary conditions on the free
surface of the melt, which is related to shear stresses. Actually, this is the only difference induced by taking
into account thermocapillary forces, since heat-conduction equations and all thermal boundary conditions
remain unchanged; hence, the possibility of splitting the global problem remains valid.

The boundary condition for shear stresses on the free boundary of the melt taking into account ther-
mocapillary forces has the following form [2]:(
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(The effect of the gas phase is neglected, as in [1].) Being projected onto a circle r2 = R2, this condition in
the zero approximation reduces to
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Here dα/dT
∣∣∣
T0

is the derivative of the surface-tension coefficient with respect to the melting point and

(∂θl/∂α2)
∣∣∣
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is the derivative of the melt-surface temperature with respect to the angle α2, taken at the
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point α2 = 0. The solution θl(r1, α1) from [1] remains valid if thermocapillary forces are taken into account;
from here, we obtain ∂θl(r1, α1)/∂α2 = (∂θl/∂r1)(∂r1/∂α2) + (∂θl/∂α1)(∂α1/∂α2) and, taking into account
Eqs. (1.2)∗, (1.3)∗, (3.8)∗, (3.11)∗, and (3.14)∗, we have

∂θl
∂α2
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0

= S′0(R1)(−R2 sinβ) = −
W

(0)
l − Λlθl∗
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R2 sinβ. (2)

According to Eq. (2.13)∗, the first term in brackets in Eq. (1) equals zero; the remaining terms are
easily calculated from Eqs. (1.2)∗, (1.3)∗, (2.10)∗, and (2.11)∗. As a result, in view of (2), condition (1) is
converted to the form
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which differs from the corresponding relation in [1] only by the right part. Eliminating ψ′′0 (R1) from Eqs. (3)
and (2.15)∗, we obtain the relation
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which is an extension of Eq. (2.16)∗ to the case of thermocapillary forces taken into account. Using the
parameters q(0)

l and P l (introduced in [1]) and the dimensionless parameter
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the relation considered acquires the form
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and, with thermocapillary forces taken into account, replaces the former “universal” dependence (4.3)∗; re-
lation (4.4)∗ remains unchanged. Thus, the system of linear equations (5) and (4.4)∗ for the dimensionless
variables R̃ and R2P

(l) defined the sought radii of curvature. We rewrite Eq. (4.4)∗ in the form
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Resolving Eqs. (5) and (6) with respect to R̃ and R2P
(l), we obtain

R2P
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, (7)

R̃ =
D cos 2β(cosϕ/ cosβ) + ρ̃M a(q(0)

l sin2 β/ cosβ)2
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.

It should be noted that the dimensionless parameter Ma (4) is large. (For example, under the conditions
of [3], Ma is of the order of 5·106 for silicon.) As a result, if the coefficients at Ma in formulas (7) are other than
zero and finite, the sought quantities are of the order of R2P

(l) = O(1/Ma) and R̃ = O(1). Taking into account
that P (l) ≈ 1/50 cm−1 (see [1]), we find thatR2 andR1 are of the order of 50(5·106)−1 cm = 10−5 cm = 0.1 µm.
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We assume that the curvature radii of this microscopic size are of no interest in the process considered and
find the conditions where these radii acquire macroscopic values of the millimeter range and the dimensionless
parameter R2P

(l) reaches, for instance, finite values

R2P
(l) ∼ 10−2. (8)

For the relation R̃ = R2/R1 = O(1) to be valid, as it follows from (5), the following condition should be
satisfied:

(q(0)
l / cosβ) sin3 β � 1. (9)

It is satisfied in the following cases:

(a) q(0)
l / cosβ � 1 for a finite sin3 β;

(b) sin3 β � 1 for a finite q(0)
l / cosβ;

(c) both factors considered are small.

The case (a) is excluded by the condition q
(0)
s > 0 of existence of the solid phase at the bound-

ary γ [condition (3.19)∗]. Indeed, as follows from Eq. (4.2)∗, we have q(0)
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l / cosβ � 1, i.e., at sinβ � 1. Thus, for finite

R̃ to exist for Ma ∼ 106, condition (9) is supplemented by the condition

β = ρ̃ϕ� 1. (10)

Conditions (9) and (10) being satisfied, the coefficient at Ma in Eq. (7) is also small, and it is possible to reduce
the effect of this large parameter to obtain values of R2P

(l) that satisfy condition (8). Hence, if thermocapillary
forces are taken into account, curvature radii of macroscopic dimensions arise only under condition (10). In
this case, we have

R̃ =
1 + ρ̃Ma(R2P

(l))ρ̃3ϕ3

1− ρ̃
+O(ϕ2),

R2P
(l) =

1 + (1− ρ̃)(ρ̃q(0)
l + 2q(0)

s )ϕ

[q(1)
l + q

(1)
s + (ρ̃q(0)

l χl + P̃ q
(0)
s χs)ϕ](1− ρ̃)− ρ̃Ma q(0)

l β3
+O(ϕ2).

(In these formulas, terms proportional to Maϕ3 are retained because of the large coefficient at Ma in them.)
In the limit β = ϕ = 0, we have R̃

∣∣∣
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= (1− ρ̃)−1 and R2P
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= [(q(1)
l +q

(1)
s )(1− ρ̃)]−1, i.e., the curvature

radius of the melt surface R2 is an order of magnitude greater than the corresponding quantity R1 for the
phase interface, since ρ̃ ≈ 0.9, and R2 depends on the velocity of heat-flux increase on the melt surface with
distance from the triple point. To obtain R2P

(l) of the order of 10−2, the value of q(1)
l + q

(1)
s should be of the

order of 103. It should be noted that the melt film with these limiting angular coordinates, apparently, is not
formed. This is a consequence of the formulas for the temperature of a polycrystal at the boundary γ and the
melt-surface temperature obtained from the solutions of [1] and valid for β = ρ̃ϕ� 1:

θs

∣∣∣
γ

= (ρsv0Q̃R1/λs)(−q(0)
s ϕα1 + (q(0)

s /2)α2
1) +O(α3

1),
(11)

θl

∣∣∣
γl

= (ρsv0Q̃R2/λl)(−q(0)
l βα2 + (q(0)

l /2)(R̃− 1)α2
2) + O(α3

2).

For β = ϕ = 0, we have
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and condition (4.2)∗ reduces to the requirement q(0)
l = q

(0)
s . Since the polycrystal-surface temperature should

decrease with distance from the triple point, and the melt-surface temperature should be greater than the
melting point, the variables (12) should satisfy the following conditions:

θs

∣∣∣
γ
< 0 for α1 > 0, θl

∣∣∣
γl
> 0 for |α2| > 0. (13)
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The solutions of (12) in combination with the requirement q(0)
l = q

(0)
s contradict the above conditions. Hence,

the limiting angles ϕ = β = 0 cannot be obtained, and the angles 0 < ϕ � 1 and β = ρ̃ϕ are formed, i.e.,
the melt film begins from a small nonzero angle of the wedge. The main terms of expansions (11) show that
conditions (13) are satisfied for q(0)

s > 0 and q
(0)
l = q

(0)
s + ϕ > 0. In fact, the result obtained means that

curvature radii of macroscopic dimensions arise only in the case of a low temperature on the melt surface,
when thermocapillary forces are small.
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